Home
Class 12
MATHS
" (v) "tan^(-1)(sqrt(1+a^(2)x^(2))-1)/(a...

" (v) "tan^(-1)(sqrt(1+a^(2)x^(2))-1)/(ax)

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the functions with respect to x:tan^(-1){(sqrt(1+a^(2)x^(2))-1)/(ax)},x!=0

Differentiate the following w.r.t. x : tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))

Differentiate the following function with respect to x:tan^(-1){(sqrt(1+a^(2)x^(2))-1)/(ax)},x!=0

Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))" w.r.t. "tan^(-1)ax

If y=tan^(-1)[(sqrt(1+a^(2)x^(2))-1)/(ax)] , then find (dy)/(dx) .

tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax)) where x!=0, is

11Ify=tan^(-1)[(sqrt(1+a^(2)x^(2))-1)/(ax)],thenfind(dy)/(dx)

y = "tan"^(-1)((sqrt(1 + a^2x^2 ) - 1)/(ax)) implies (1 + a^2x^2)y^('') + 2a^2 xy^' =

tan^(-1)(x+sqrt(1+x^(2)))=