Home
Class 11
MATHS
int(0)^(1)x*e^(x^(2))dx=...

int_(0)^(1)x*e^(x^(2))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

I=int_(0)^(1)e^(x^(2)-x)dx then

The value of int_(0)^(1)e^(x^(2)-x)dx is (a) 1(c)>e^(-(1)/(4))(d)

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

If int_(0)^(1)e^(x^(2))(x-alpha)dx=0, then

If int_(0)^(1) e^(x^(2))(x-alpha)dx=0 then

If int_(0)^(1)e^(x^(2)) (x-alpha)dx=0 then

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

Evaluate the following : int_(0)^(1)e^(x^(2)).x^(3)dx