Home
Class 12
MATHS
L(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+......

L_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+...sqrt(n))/(n sqrt(n))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(n rarr oo)[(sqrt(1)+2sqrt(2)+3sqrt(3)+ .......... +nsqrt(n))/(n^(5/2))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

{:(" "Lt),(n rarr oo):} ((sqrt(1)+2sqrt(2)+3sqrt(3)+......+nsqrt(n))/(n^(5//2)))=

Lt_(n rarr oo)[(sqrt(n))/(sqrt(n^(3)))+(sqrt(n))/(sqrt((n+4)^(3)))+....+(sqrt(n))/(sqrt([n+4(n-1)]^(3)))]

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

Evaluate the limit. lim_(n to oo) (sqrt(n+1)+sqrt(n+2)+……..+ sqrt(n+n))/(nsqrt(n))