Home
Class 12
MATHS
int e^(x)((1+x log x)/(x))dx=...

int e^(x)((1+x log x)/(x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

A: int e^(x)((1+x log x)/(x))=e^(x)log x+c R: int e^(x)[f(x)+f'(x)]dx=e^(x)f(x)+c

Evaluate: int e^(x)(log x+(1)/(x))dx

int(e^(x)(x log x+1))/(x)dx is equal to

int_(1)^(2)(e^(x)(1+x log x))/(x) dx=

int e^(x)( log x+(1)/(x^(2)))dx=

Evaluate: int e^(x)(log x+(1)/(x^(2)))dx

int (e^(x))/(x)(x log x+1)dx

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

int e^(x) (x+1) log x dx=