Home
Class 11
MATHS
(d)/(dx)(sqrt(x)+(1)/(sqrt(x)))^(2)=...

(d)/(dx)(sqrt(x)+(1)/(sqrt(x)))^(2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate wrt x (sqrt(x)+(1)/(sqrt(x)))^(5)

(d)/(dx) {(1)/(sqrt(3x +2))}=

(d)/(dx) { log ((sqrt(x+1) -1)/(sqrt(x + 1 ) +1 )) + ( sqrtx)/(sqrt( x +1))}=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Differentiate (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)) with respect to x:

Differentiate the following function (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

d//dx[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^(1//2)]

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is