Home
Class 12
MATHS
" If "x^(16)y^(9)=(x^(2)+y)^(17)," prove...

" If "x^(16)y^(9)=(x^(2)+y)^(17)," prove that "x(dy)/(dx)=2y

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(16)y^(9)=(x^(2)+y)^(17) , prove that dy/dx=(2y)/x .

If x^16 . y^9 = (x^2 + y)^(17) , prove that (dy)/(dx) = (2y)/x .

If log ((x^(2) -y^(2))/( x^(2)+ y^(2))) =a, Prove that (dy)/(dx) =(y)/(x).

If x^16 y^9 = (x^2 + y)^17, Prove (dy)/(dx) = (2y)/(x)

If (x-y)e^((x)/(x-y))=a, prove that (dy)/(dx)+x=2y

If (x-y)x^((x)/(x-y))=a, prove that y(dy)/(dx)+x=2y

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If tan((x^(2)-y^(2))/(x^(2)+y^(2)))=a then prove that (dy)/(dx)=(y)/(x)

If y=x+(1)/(x+(1)/(x+(1)/(x+1))), prove that (dy)/(dx)=(y)/(2y-x)