Home
Class 8
MATHS
Divide: 9m^5+12 m^4-6m^2\ \ by\ \ 3m^2...

Divide: `9m^5+12 m^4-6m^2\ \ ` by`\ \ 3m^2` (2)`24 x^3y+20 x^2y^2-4x y\ ` by`\ \ 2x y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide: 9m^(5)+12m^(4)-6m^(2) by 3m^(2)24x^(3)y+20x^(2)y^(2)-4xy by 2xy

Divide: (i) 6x^(5) + 18 x^(4) - 3x^(2) by 3x^(2) (ii) 20 x^(3) y + 12 x^(2) y^(2) - 10 xy by 2xy

Divide: m^3-14 m^2+37 m-26\ b y\ m^2-12 m+13 x^4+x^2+1\ b y\ x^2+x+1

Divide: 6x^3y^2z^2\ \ by \ \ 3x^2y z (2) 15 m^2n^(3\ ) by \ 5m^2n^2 (3) 24 a^3b^3\ by -8a b (4) -21\ a b c^2 by \ 7a b c

Divide: (i) 5m^(2) - 30 m^(2) + 45m by 5m (ii) 8x^(2) y^(2) - 6xy + 10 x^(2) y^(3) by 2xy (iii) 9x^(2) y - 6xy + 12 xy^(2) by - 3xy (iv) 12x^(4) + 8x^(3) - 6x^(2) by -2x^(2)

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Divide: 3x^3y^2+2x^2y+15 x y\ b y\ 3x y x^2+7x+12\ b y\ x+4

y-1=m_1(x-3) and y - 3 = m_2(x - 1) are two family of straight lines, at right angled to each other. The locus of their point of intersection is: (A) x^2 + y^2 - 2x - 6y + 10 = 0 (B) x^2 + y^2 - 4x - 4y +6 = 0 (C) x^2 + y^2 - 2x - 6y + 6 = 0 (D) x^2 + y^2 - 4x - by - 6 = 0

2x^2\X\ 3x y^2\X\ 4x^3y^5 is equal to: (a) 24 x^6y^6 (b) 24 x^6y^7 24 x^7y^6 (d) 24 x^7y^7

Factorize the following : (1) 9x^2y+3a x y (2) 16 m-4m^2 (3) -4a^2+4a b-4c a (4) x^2y z+x y^2z+x y z^2 (5) a x^2y+b x y^2+c x y z