Home
Class 12
MATHS
If alpha, beta, gamma are the roots of x...

If `alpha, beta, gamma` are the roots of `x^3-x^2-1=0` then find the value of `(1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)//(1-alpha)+(1+beta)//(1-beta)+(1+gamma)//(1-gamma) is equal to

If alpha,beta and gamma are the roots of x^(3)-x^(2)-1=0, then value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

.If alpha,beta,gamma are roots of x^(3)-x^(2)-1=0 then the value of ((1+alpha))/((1-alpha))+((1+beta))/((1-beta))+((1+gamma))/((1-gamma)) is equal to

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

if alpha, beta, gamma are the roots of equation x^3-x-1=0 , then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

[" If "alpha,beta,gamma" are roots of "],[[x^(3)-x^(2)-1=0" then the value of "],[((1+alpha))/((1-alpha))+((1+beta))/((1-beta))+((1+gamma))/((1-gamma))" is equal to "],[[" (A) "-5],[" (B) "-6]]]