Home
Class 12
MATHS
a sin A-b sin B=c sin(A-B)...

`a sin A-b sin B=c sin(A-B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2), b^(2), c^(2) are in

sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)

If (sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

Show that: sin A sin(B-C)+sin B sin(C-A)+sin C sin(A-B)=0

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

In a Delta ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), then a^(2),b^(2),c^(2) are in