Home
Class 12
MATHS
If x=x1 +- r cos theta, y=y1 +- r sin th...

If `x=x_1 +- r cos theta, y=y_1 +- r sin theta` be the equation of straight line then, the parameter in this equation is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=r cos theta,y=r sin theta, show that

If x=r cos theta, y=r sin theta Prove that x^(2)+y^(2)=r^(2)

If x = r cos theta and y =r sin theta , then proof x^2 + y^2 = r^2

If x = r cos theta, y = r sin theta, r =a(1+cos theta) then find (dy)/(dx)

If x and y are connected parametrically by the equation without eliminating the parameter, find (dy/dx) if x=a(theta-sin theta), y=a(1+cos theta)

If x and y are connected parametrically by the equation without eliminating the parameter, find (dy/dx) if x=a(cos theta+theta sin theta) y=a(sin theta-theta cos theta)

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter. x cos theta-cos2theta, y = sin theta - sin 2 theta

If x and y are connected parametrically by the equation without eliminating the parameter, find (dy/dx) if x=cos theta-cos 2 theta, y=sin theta-sin 2 theta

If x and y are connected parameterically by the equation , without eliminating the parameter , find dy/dx x = a cos(theta) , y = b sin(theta)

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter. y = a(theta + sin theta), x = a(1+costheta)