Home
Class 11
MATHS
If A,A1,A2 and A3 are the areas of the i...

If `A,A_1,A_2` and `A_3` are the areas of the inscribed and escribed circles of a triangle, prove that `1/sqrtA=1/sqrt(A_1)+1/sqrt(A_2)+1/sqrt(A_3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, A_1,A_2,A_3 are the areas of the inscribed and escribed circles of a DeltaABC, then

If A_1 , A_2 , A_3 are areas of excircles, A is the area of incircle of a triangle then (1 ) /( sqrt(A_1)) + (1)/( sqrt(A_2)) + ( 1)/( sqrt(A_3))=

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+ ..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot