Home
Class 12
MATHS
Let f: R-> R be a positive increasing fu...

Let `f: R-> R` be a positive increasing function with `lim_(x->oo) f(3x)/f(x)=1` then `lim_(x->oo)f(2x)/f(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1

Let f: R to R be a positive increasing function with Lt_(x to oo)(f(3x))/(f(x))=1 then Lt_(x to oo)(f(2x))/(f(x))=

Let f: R rarr R be a positive increasing function with underset(xrarrinfty)lim(f(3x))/(f(x))=1, then underset(xrarrinfty)lim(f(2x))/(f(x)) =