Home
Class 10
MATHS
In a quadrilateral ABCD, angleA+angleD= ...

In a quadrilateral ABCD, `angleA+angleD= 90^@`. Prove that `AC^2+ BD^2= AD^2 +BC^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD angle B = angle D = 90 ^(@) Prove that : 2AC^(2) - BC^(2) = AB^(2) + AD^(2) +DC^(2)

In a quadrilateral ABCD, angleB=90^(@) and angleD=90^(@) . Prove that : " "2AC^(2)-AB^(2)=BC^(2)+CD^(2)+DA^(2)

In a quadrilateral ABCD, angleB = 90^0 , AD^2 = AB^2 + BC^2 + CD^2 . Prove that angle ACD = 90 ^0 .

ABCD is a quadrilateral in which AD=BC and angleADB=angleCBA . Prove that: BD=AC

In quadrilateral ABCD, AB=AD, AC bisects angleA . Prove DeltaABC~ADC .

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

In Figure 2, AD _|_ BC . Prove that AB^2 + CD^2 = BD^2 + AC^2 .

In triangle ACB , angle C = 90^@ and CD bot AB . Prove that BC^2/AC^2 = BD/AD .

In quadrilateral ABCD, AB "||" CD and AD= BC, prove that angleA=angleB.