Home
Class 11
MATHS
Prove that : tan^(-1)(sqrt(x))=1/2cos^(-...

Prove that : `tan^(-1)(sqrt(x))=1/2cos^(-1)((1-x)/(1+x))`, `xepsilon[0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

Prove that : tan^(-1)sqrtx=1/2cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

prove that tan^(-1)(sqrt(x))=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]