Home
Class 12
MATHS
The function y = f(x) satisfying the con...

The function y = f(x) satisfying the condition `f(x+1/x)= x^3 +1/x^3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function y = f(x) satisfying the condition f(x+ 1/x)=x^(2) + (1)/(x^(2))( != 0) . Then the

Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1/(x^2)(x!=0) . Then the

If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,x ne 0 then f(x) is

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0)

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) for all x in R,x!=0. If f(3)=-26, then f(4)=