Home
Class 12
MATHS
Show that d/(dx)int(x^2)^(x^2)1/(logt)d...

Show that `d/(dx)int_(x^2)^(x^2)1/(logt)dt=1/(logx)(x^2-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (d)/(dx)int_(x^(2))^(x^(2))(1)/(log t)dt=(1)/(log x)(x^(2)-x)

Find (d)/(dx)(int_(x^(2))^(x^(3))(1)/(log t)dt)

(d)/(dx)(int_(x^(2))^((x^(3)) (1)/(logt)dt) is equal to

(d)/(dx)(int_(x^(2))^((x^(3)) (1)/(logt)dt) is equal to

(d)/(dx)(int(1)/(x^(3)(x-1))dx)=

(d)/(dx) int_(2)^(x^(2)) (t -1) dt is equal to

(d)/(dx)int_(t^(2))^(x^(3))(dt)/(sqrt(x^(2)+t^(4)))

If f is a continuous function on [a;b] and u(x) and v(x) are differentiable functions of x whose values lie in [a;b] then (d)/(dx){int_(u(x))^(v)(x)f(t)dt}=f(v(x))dv(x)/(dx)-f(u(x))du(x)/(dx)

Let f(t)="ln"(t) . Then, (d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")