Home
Class 10
MATHS
if a = log12 m ; b = log18 m , prove tha...

if` a = log_12 m ; b = log_18 m `, prove that `(a-2b)/(b-2a) = log_3 2 `.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a = log_(12)m and b = log_(18)m , then prove that log_(3)2= (a-2b)/(b-2a) .

If log_(12) m = a and log_(18) m = b , then (a- 2b)/(b - 2a) is

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

If log(a+b+c) = log a + log b + log c , then prove that log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2)) .

if log((a+b)/(2))=(1)/(2)(log a+log b), prove that a=b