Home
Class 12
MATHS
A= [[2-lambda,-1,0],[-1,2-lambda,-1],[0,...

`A= [[2-lambda,-1,0],[-1,2-lambda,-1],[0,-1,2-lambda]]` then find out determinant of A:

Answer

Step by step text solution for A= [[2-lambda,-1,0],[-1,2-lambda,-1],[0,-1,2-lambda]] then find out determinant of A: by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .

For a non zero " lambda" ,the value of matrix "[[lambda,1,0],[0,lambda,1],[0,0,lambda]]^(n) " is equal to

Knowledge Check

  • If A = [(lambda,1),(-1,-lambda)] , then for what value of lambda,A^(2)=0 ?

    A
    0
    B
    `+-1`
    C
    `-1`
    D
    1
  • The value of lambda for which the matrix product [(2,0,7),(0,1,0),(1,-2,1)][(-lambda,14lambda,7lambda),(0,1,0),(lambda,-4lambda,-2lambda)] is a identity matrix is

    A
    `(1)/(2) `
    B
    `(1)/(3)`
    C
    `(1)/(4)`
    D
    `(1)/(5)`
  • Similar Questions

    Explore conceptually related problems

    If A= [[2,3,5],[1,2,1],[0,1,7]] and A^(3)-lambda A^(2)+28A-10=0 , then the value of lambda is

    If A = [{:(lambda,1),(-1,-lambda):}] , then for what values of lambda, A^(2) =0 ? …………..

    [" 2.Let matrix "A=[[1,y,4],[2,2,z]]" ; if "xyz=2 lambda" and "8x+4y+3z=lambda+28," then "(adj A)" A equals: "],[[" (A) "[[lambda+1,0,0],[0,lambda+1,0],[0,0,lambda+1]]," (B) "[[lambda,0,0],[0,lambda,0],[0,0,lambda]]],[" (C) "[[lambda^(2),0,0],[0,lambda^(2),0],[0,0,lambda^(2)]]," (D) "[[lambda+2,0,0],[0,lambda+2,0],[0,0,lambda+2]]]]

    If A=[[3 ,1],[-1 ,2]] and I=[[1, 0],[ 0, 1]] , then find lambda so that A^2=5A+lambdaI

    Number of real values of lambda for which the matrix A=[[2,-1,32,-1,3lambda+3,lambda-2,lambda+7]] has no inverse (A) 0(B)1(C)2(D) infinite ]]

    If the following equations x+y-3=0,(1+lambda)x+(2+lambda)y-8=0,x-(1+lambda)y+(2+lambda)=0 are consistent then the value of lambda is