Home
Class 11
MATHS
If barxis at mean of n values of x, then...

If `barx`is at mean of n values of x, then `Sigma_(i=1)^(n) (x_(i)- barx)=0` and if a has value other than `barx " then " Sigma_(i=1)^(n) (x_(i)- barx)^(2) " is less than " Sigma(x_(i)-a)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

If `barx` is the mean of n values of x, then `overset(n)underset(i=1)Sigma(x_(i)-barx)=0 "and if a has only other than " barx, " then " overset(n)underset(i=1)Sigma(x_(i)-barx)^(2) "is less than " Sigma(x_(i)-a)^(2)`
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTION|16 Videos
  • SETS

    NCERT EXEMPLAR|Exercise TRUE AND FALSE|6 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If barx is the mean of x_1, x_2, x_3, ... .. , x_n , then sum_(i=1)^(n)(x_i-barx)=

Find the value of the mean barX , " if " Sigma f_(i) x_(i) = 30 " and " Sigma f_(i) = 6 .

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If barx=1/n sum_(i=1)^n x_i then prove that sum_(i=1)^n (x_i-barx)=0