Home
Class 12
MATHS
evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(...

evaluate: `|(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} \] we will follow the steps outlined in the video transcript. ### Step 1: Modify the first row We will replace the first row \( R_1 \) with \( R_1 + R_2 + R_3 \). \[ R_1 = (a-b-c) + (2b) + (2c), \quad R_2 = (2b, b-c-a, 2b), \quad R_3 = (2c, 2c, c-a-b) \] Calculating \( R_1 \): \[ R_1 = (a-b-c + 2b + 2c) = (a + b + c) \] So, the determinant becomes: \[ D = \begin{vmatrix} a + b + c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} \] ### Step 2: Simplify the determinant Next, we will perform column operations. We will replace \( C_2 \) with \( C_2 - C_1 \) and \( C_3 \) with \( C_3 - C_1 \). Calculating the new columns: - \( C_2 = 2a - (a + b + c) = a - b - c \) - \( C_3 = 2a - (a + b + c) = a - b - c \) Thus, the determinant becomes: \[ D = \begin{vmatrix} a + b + c & a - b - c & a - b - c \\ 2b & b-c-a - (2b) & 2b - (2b) \\ 2c & 2c - (2c) & c-a-b - (2c) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} a + b + c & a - b - c & a - b - c \\ 2b & -c-a-b & 0 \\ 2c & 0 & c-a-b - 2c \end{vmatrix} \] ### Step 3: Factor out common terms Notice that the second and third columns are identical. Therefore, the determinant evaluates to zero: \[ D = 0 \] ### Final Answer The value of the determinant is \[ \boxed{0} \]

To evaluate the determinant \[ D = \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

If A= [{:(a-b-c, 2a,2a), (2b, b-c-a, 2b),(2c, 2c, c-a-b):}] = (a +b+c) (x +a +b+c)^(2), x ne 0 " and " a +b +c ne 0 , then x is equal to

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

Solve the determinant using properties |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3

det[[ prove that ,2aa-b-c,2a,2a2b,b-c-a,2b2c,2c,c-a-b]]=(a+b+c)^(3)

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

    Text Solution

    |

  2. evaluate: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|

    Text Solution

    |

  3. evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  4. prove that:|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y...

    Text Solution

    |

  5. prove that:|(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

    Text Solution

    |

  6. Using properties of determinants, prove that 3 2 (a 1) 3 3 1 2a 1...

    Text Solution

    |

  7. If A+B+C=0, then prove that Det[[1,cosC,cosB],[cosC,1,cosA],[cosB,cosA...

    Text Solution

    |

  8. If the coordinates of the vertices of an equilateral triangle with sid...

    Text Solution

    |

  9. Find the value of theta if |[1,1,sin 3theta] , [-4,3,cos 2theta] , [7,...

    Text Solution

    |

  10. If |[4-x, 4+x, 4+x], [4+x, 4-x, 4+x],[4+x, 4+x, 4-x]| = 0 find the va...

    Text Solution

    |

  11. If a(1),a(2),a(3),….,a(r) are in GP, then prove that the determinant |...

    Text Solution

    |

  12. Show that the points (a+5,a-4),(a-2,a+3) and (a,a) do not lie on a str...

    Text Solution

    |

  13. Show that DeltaABC is an isosceles triangle, if the determinant Delt...

    Text Solution

    |

  14. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  15. If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then find the value of A^(-1) Us...

    Text Solution

    |

  16. Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=...

    Text Solution

    |

  17. If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| th...

    Text Solution

    |

  18. If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

    Text Solution

    |

  19. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  20. If x+y+z=0 , prove that |x a y b z c y c z a x b z b x c y a|=x y z|a ...

    Text Solution

    |