Home
Class 12
MATHS
prove that:|(y^(2)z^(2),yz,y+z),(z^(2)x^...

prove that:`|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have to prove
`|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0`
`LHS=|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=1/(xyz)|(x^(2)y^(2)z^(2),xyz,xy+xz),(x^(2)yz^(2),xyz,yz+xy),(x^(2)y^(2)z,xyz,xz+yz)|`
`[ :' R_(1)toxR_(1),R_(2)toyR_(2),R_(3)tozR_(3)]`
`=1/(xyz) (xyz)^(2)|(yz, 1, xy+xz),(xz, 1, yz+xy),(xy, 1, xz+yz)|`
[taking `(xyz)` common from `C_(1)` and `C_(2)`]
`=xyz|(yz,1,xy+yz+zx),(xz,1,xy+yz+zx),(xy,1,xy+yz+zx)|[C_(3)toC_(3)+C_(1)]`
`=xyz(xy+yz+zx)|(yz,1,1),(xz,1,1),(xy,1,1)|`
[taking `(xy+yz+zx)` common from `C_(3)`]
`=0` [since `C_(2)` and `C_(3)` are identicals ]
`=RHS`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

|(x^(2),y^(2)+z^(2),yz),(y^(2),z^(2)+x^(2),zx),(z^(2),x^(2)+y^(2),xy)| is divisible by

Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),(zx,(z+y)^(2),xy),(zy,xy,(z+x)^(2)):}|=2xyz(x+y+z)^(3) .

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

yz-x^(2)quad zx-y^(2)quad xy-z^(2)| Prove that det[[yz-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]] is divisible by (x+y+z), and hence find the quotient.

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

Which of the following are possible solutions of |(y^2+z^2,xy,xz),(xy,z^2+x^2,yz),(zx,zy,x^2+y^2)|=8 are (x,y,z)=

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

Verify that: (x+y+z)^(2)=x^(2)+y^(2)+z^(2)+2xy+2yz+2zx

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. evaluate: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|

    Text Solution

    |

  2. evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  3. prove that:|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y...

    Text Solution

    |

  4. prove that:|(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

    Text Solution

    |

  5. Using properties of determinants, prove that 3 2 (a 1) 3 3 1 2a 1...

    Text Solution

    |

  6. If A+B+C=0, then prove that Det[[1,cosC,cosB],[cosC,1,cosA],[cosB,cosA...

    Text Solution

    |

  7. If the coordinates of the vertices of an equilateral triangle with sid...

    Text Solution

    |

  8. Find the value of theta if |[1,1,sin 3theta] , [-4,3,cos 2theta] , [7,...

    Text Solution

    |

  9. If |[4-x, 4+x, 4+x], [4+x, 4-x, 4+x],[4+x, 4+x, 4-x]| = 0 find the va...

    Text Solution

    |

  10. If a(1),a(2),a(3),….,a(r) are in GP, then prove that the determinant |...

    Text Solution

    |

  11. Show that the points (a+5,a-4),(a-2,a+3) and (a,a) do not lie on a str...

    Text Solution

    |

  12. Show that DeltaABC is an isosceles triangle, if the determinant Delt...

    Text Solution

    |

  13. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  14. If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then find the value of A^(-1) Us...

    Text Solution

    |

  15. Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=...

    Text Solution

    |

  16. If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| th...

    Text Solution

    |

  17. If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

    Text Solution

    |

  18. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  19. If x+y+z=0 , prove that |x a y b z c y c z a x b z b x c y a|=x y z|a ...

    Text Solution

    |

  20. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |