Home
Class 12
MATHS
Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0...

Find `A^(-1)` if `A=|(0,1,1),(1,0,1),(1,1,0)|` and show that `A^(-1)=(A^(2)-3I)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) and show that \( A^{-1} = \frac{A^2 - 3I}{2} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) Given the matrix: \[ A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] The determinant of \( A \) can be calculated using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the elements are: - \( a = 0, b = 1, c = 1 \) - \( d = 1, e = 0, f = 1 \) - \( g = 1, h = 1, i = 0 \) Calculating: \[ \text{det}(A) = 0(0 \cdot 0 - 1 \cdot 1) - 1(1 \cdot 0 - 1 \cdot 1) + 1(1 \cdot 1 - 0 \cdot 1) \] \[ = 0 - 1(-1) + 1(1) \] \[ = 1 + 1 = 2 \] ### Step 2: Check if the Inverse Exists Since the determinant \( \text{det}(A) = 2 \) is non-zero, the inverse of \( A \) exists. ### Step 3: Calculate the Adjoint of \( A \) To find the inverse, we need the adjoint of \( A \). The adjoint is the transpose of the cofactor matrix. #### Step 3.1: Calculate the Cofactors 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \text{det}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1(0 - 1) = -1 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \text{det}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = -1(0 - 1) = 1 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \text{det}\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = 1(1 - 0) = 1 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot \text{det}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = -1(0 - 1) = 1 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot \text{det}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1(0 - 1) = -1 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = (-1)^{2+3} \cdot \text{det}\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = -1(0 - 1) = 1 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = (-1)^{3+1} \cdot \text{det}\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = 1(1 - 0) = 1 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = (-1)^{3+2} \cdot \text{det}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = -1(0 - 1) = 1 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = (-1)^{3+3} \cdot \text{det}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = 1(0 - 1) = -1 \] #### Step 3.2: Form the Cofactor Matrix and Adjoint The cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( A \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] \[ A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] \[ = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 5: Show that \( A^{-1} = \frac{A^2 - 3I}{2} \) #### Step 5.1: Calculate \( A^2 \) \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] Calculating each element: - First row: - \( (0 \cdot 0 + 1 \cdot 1 + 1 \cdot 1) = 2 \) - \( (0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1) = 1 \) - \( (0 \cdot 1 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - Second row: - \( (1 \cdot 0 + 0 \cdot 1 + 1 \cdot 1) = 1 \) - \( (1 \cdot 1 + 0 \cdot 0 + 1 \cdot 1) = 2 \) - \( (1 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 1 \) - Third row: - \( (1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1) = 1 \) - \( (1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1) = 2 \) - \( (1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0) = 2 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \] #### Step 5.2: Calculate \( 3I \) The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \] #### Step 5.3: Calculate \( A^2 - 3I \) \[ A^2 - 3I = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 - 3 & 1 - 0 & 1 - 0 \\ 1 - 0 & 2 - 3 & 1 - 0 \\ 1 - 0 & 1 - 0 & 2 - 3 \end{pmatrix} \] \[ = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] #### Step 5.4: Calculate \( \frac{A^2 - 3I}{2} \) \[ \frac{A^2 - 3I}{2} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \] ### Conclusion Thus, we have shown that: \[ A^{-1} = \frac{A^2 - 3I}{2} \]

To find the inverse of the matrix \( A \) and show that \( A^{-1} = \frac{A^2 - 3I}{2} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) Given the matrix: \[ A = \begin{pmatrix} 0 & 1 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

Find the inverse of each of the matrices given below : If A=[(1,-1,1),(2,-1,0),(1,0,0)], " show that " A^(-1)=A^(2)

If A = [ (0,1,1),(1,0,1),(1,1,0)] then A^(2) - 3I =

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

If A=[[1,0,1],[0,1,2],[0,0,4]] then show that |3A|=27|A|

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. Show that the points (a+5,a-4),(a-2,a+3) and (a,a) do not lie on a str...

    Text Solution

    |

  2. Show that DeltaABC is an isosceles triangle, if the determinant Delt...

    Text Solution

    |

  3. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  4. If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then find the value of A^(-1) Us...

    Text Solution

    |

  5. Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=...

    Text Solution

    |

  6. If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| th...

    Text Solution

    |

  7. If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

    Text Solution

    |

  8. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  9. If x+y+z=0 , prove that |x a y b z c y c z a x b z b x c y a|=x y z|a ...

    Text Solution

    |

  10. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  11. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  12. If the area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq...

    Text Solution

    |

  13. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  14. The number of distinct real roots of abs((sinx, cosx, cosx),(cos x,sin...

    Text Solution

    |

  15. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  16. Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim(t->0) f(t)...

    Text Solution

    |

  17. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  18. [ 28.If f(x)=|[0,x-a,x-bx+a,0,x-cx+b,x+c,0]| then,[ 1) f(a)=0, 2) f(b)...

    Text Solution

    |

  19. If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which...

    Text Solution

    |

  20. If A and B are invertible matrices then which of the following is not ...

    Text Solution

    |