Home
Class 12
MATHS
If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then...

If `A\|(1,2,0),(-2,-1,-2),(0,-1,1)|`, then find the value of `A^(-1)`
Using `A^(-1)`, solve the system of linear equations `x-2y=10, 2xy-z=8` and `-2y+z=7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the inverse of matrix \( A \) and then use it to solve the given system of linear equations. ### Step 1: Define the matrix \( A \) Given: \[ A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A \) To find the inverse, we first need to check if the determinant of \( A \) is non-zero. \[ \text{det}(A) = 1 \cdot \begin{vmatrix} -1 & -2 \\ -1 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} -2 & -2 \\ 0 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} -2 & -1 \\ 0 & -1 \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} -1 & -2 \\ -1 & 1 \end{vmatrix} = (-1)(1) - (-2)(-1) = -1 - 2 = -3\) 2. \(\begin{vmatrix} -2 & -2 \\ 0 & 1 \end{vmatrix} = (-2)(1) - (-2)(0) = -2\) Now substituting back: \[ \text{det}(A) = 1 \cdot (-3) - 2 \cdot (-2) + 0 = -3 + 4 = 1 \] Since \(\text{det}(A) \neq 0\), the inverse exists. ### Step 3: Find the cofactors of \( A \) We will calculate the cofactors for each element of \( A \). - \( C_{11} = (-1)^{1+1} \begin{vmatrix} -1 & -2 \\ -1 & 1 \end{vmatrix} = 1 \cdot (-3) = -3 \) - \( C_{12} = (-1)^{1+2} \begin{vmatrix} -2 & -2 \\ 0 & 1 \end{vmatrix} = -1 \cdot (-2) = 2 \) - \( C_{13} = (-1)^{1+3} \begin{vmatrix} -2 & -1 \\ 0 & -1 \end{vmatrix} = 1 \cdot (2) = 2 \) - \( C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = -1 \cdot (2) = -2 \) - \( C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot (1) = 1 \) - \( C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} = -1 \cdot (-1) = 1 \) - \( C_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 0 \\ -1 & -2 \end{vmatrix} = 1 \cdot (-4) = -4 \) - \( C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 0 \\ -2 & -2 \end{vmatrix} = -1 \cdot (-2) = 2 \) - \( C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} = 1 \cdot (1) = 1 \) ### Step 4: Form the cofactor matrix The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 1 \end{pmatrix} \] ### Step 5: Find the adjoint of \( A \) The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{pmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \] ### Step 6: Calculate the inverse of \( A \) Using the formula \( A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \): \[ A^{-1} = \frac{1}{1} \begin{pmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \] ### Step 7: Solve the system of equations We represent the system of equations in matrix form: \[ C = \begin{pmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \] The equation can be written as: \[ C X = B \] Thus, we can find \( X \) using: \[ X = A^{-1} B \] Calculating \( A^{-1} B \): \[ X = \begin{pmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \] Calculating the product: 1. First row: \(-3(10) + -2(8) + -4(7) = -30 - 16 - 28 = -74\) 2. Second row: \(2(10) + 1(8) + 2(7) = 20 + 8 + 14 = 42\) 3. Third row: \(2(10) + 1(8) + 1(7) = 20 + 8 + 7 = 35\) Thus, we have: \[ X = \begin{pmatrix} -74 \\ 42 \\ 35 \end{pmatrix} \] ### Final Answer The solution to the system of equations is: \[ x = -74, \quad y = 42, \quad z = 35 \]

To solve the problem step by step, we will first find the inverse of matrix \( A \) and then use it to solve the given system of linear equations. ### Step 1: Define the matrix \( A \) Given: \[ A = \begin{pmatrix} 1 & 2 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

Using matrix method, solve the system of linear equations x-2y=10,2x-y-z=8and-2y+z=7

If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the system of linear equations x-2 y=10,2 x-y-z=8,-2 y+z=7.

If x=1, y=2, z=-1 then find the value of z^2-2xy(x-y)

Using matrices,solve the following system of linear equations: 2x-y+z=3,-x+2y-z=-4,x-y+2z=1

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

Using matrices,solve the following system of linear equations: 3x-2y+3z=8;2x+y-z=1;4x-3y+2z=4

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

If A=[[1,-1,12,1,-31,1,1]], find A^(-1) and hence solve the system of linear equation.x+2y+z=4,-x+y+z=0,x-3y+z=2

Using matrices,solve the following system of equations: x+2y+z=7,x+3z=11,2x-3y=1

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. Show that DeltaABC is an isosceles triangle, if the determinant Delt...

    Text Solution

    |

  2. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  3. If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then find the value of A^(-1) Us...

    Text Solution

    |

  4. Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=...

    Text Solution

    |

  5. If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| th...

    Text Solution

    |

  6. If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

    Text Solution

    |

  7. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  8. If x+y+z=0 , prove that |x a y b z c y c z a x b z b x c y a|=x y z|a ...

    Text Solution

    |

  9. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  10. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  11. If the area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq...

    Text Solution

    |

  12. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  13. The number of distinct real roots of abs((sinx, cosx, cosx),(cos x,sin...

    Text Solution

    |

  14. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  15. Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim(t->0) f(t)...

    Text Solution

    |

  16. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  17. [ 28.If f(x)=|[0,x-a,x-bx+a,0,x-cx+b,x+c,0]| then,[ 1) f(a)=0, 2) f(b)...

    Text Solution

    |

  18. If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which...

    Text Solution

    |

  19. If A and B are invertible matrices then which of the following is not ...

    Text Solution

    |

  20. If x , y , z are different from zero and |1+x1 1 1 1+y1 1 1 1+z|=0 the...

    Text Solution

    |