Home
Class 12
MATHS
If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B...

If `A=|(2,2,-4),(-4,2,-4),(2,-1,5)|` and `B=|(1,-1,0),(2,3,4),(0,1,2)|` then find BA and use ths to sovle the system of equations `y+2z=7, x-y=3` and `2x+3y+4z=17`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first calculate the product \( BA \) and then use it to solve the system of equations. ### Step 1: Define the matrices \( A \) and \( B \) Given: \[ A = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] ### Step 2: Calculate the product \( BA \) To find \( BA \), we multiply matrix \( B \) by matrix \( A \): \[ BA = B \cdot A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row: - \( (1 \cdot 2) + (-1 \cdot -4) + (0 \cdot 2) = 2 + 4 + 0 = 6 \) - \( (1 \cdot 2) + (-1 \cdot 2) + (0 \cdot -1) = 2 - 2 + 0 = 0 \) - \( (1 \cdot -4) + (-1 \cdot -4) + (0 \cdot 5) = -4 + 4 + 0 = 0 \) - Second row: - \( (2 \cdot 2) + (3 \cdot -4) + (4 \cdot 2) = 4 - 12 + 8 = 0 \) - \( (2 \cdot 2) + (3 \cdot 2) + (4 \cdot -1) = 4 + 6 - 4 = 6 \) - \( (2 \cdot -4) + (3 \cdot -4) + (4 \cdot 5) = -8 - 12 + 20 = 0 \) - Third row: - \( (0 \cdot 2) + (1 \cdot -4) + (2 \cdot 2) = 0 - 4 + 4 = 0 \) - \( (0 \cdot 2) + (1 \cdot 2) + (2 \cdot -1) = 0 + 2 - 2 = 0 \) - \( (0 \cdot -4) + (1 \cdot -4) + (2 \cdot 5) = 0 - 4 + 10 = 6 \) Putting it all together, we have: \[ BA = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = 6I \] where \( I \) is the identity matrix. ### Step 3: Finding the inverse of \( B \) Since \( BA = 6I \), we can find the inverse of \( B \): \[ B^{-1} = \frac{1}{6} A \] ### Step 4: Set up the system of equations The system of equations given is: 1. \( y + 2z = 7 \) 2. \( x - y = 3 \) 3. \( 2x + 3y + 4z = 17 \) This can be represented in matrix form as: \[ \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] ### Step 5: Solve for \( \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) Using the inverse of \( B \): \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = B^{-1} \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} = \frac{1}{6} A \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] Calculating \( A \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \): \[ A \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] Calculating each element: - First row: \( 2 \cdot 3 + 2 \cdot 17 - 4 \cdot 7 = 6 + 34 - 28 = 12 \) - Second row: \( -4 \cdot 3 + 2 \cdot 17 - 4 \cdot 7 = -12 + 34 - 28 = -6 \) - Third row: \( 2 \cdot 3 - 1 \cdot 17 + 5 \cdot 7 = 6 - 17 + 35 = 24 \) Thus: \[ A \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} = \begin{pmatrix} 12 \\ -6 \\ 24 \end{pmatrix} \] Now, multiplying by \( \frac{1}{6} \): \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 12 \\ -6 \\ 24 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = 2, \quad y = -1, \quad z = 4 \]

To solve the problem step by step, we will first calculate the product \( BA \) and then use it to solve the system of equations. ### Step 1: Define the matrices \( A \) and \( B \) Given: \[ A = \begin{pmatrix} 2 & 2 & -4 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}] . Find AB . Use this to solve that following system of equations : x-y=3 , 2x+3y+4z=17 , y+2z=7 .

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is

Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1) . Hence, solve the system of equations : 3x+3y+2z=1 , x+2y=4 , 2x-3y-z=5

If A=[(1,2,-3),(2,3,2),(3,-3,-4)] then find A^-1 and hence solve the follwoing equations: x+2y-3z=4, 2x+3y+2z=2 and 3x-3y-4z=11

x-y=3 2x+3y+4z=17 y+2z=7

Determination the product [{:(,1,-1,1),(,1,-2,-2),(,2,1,3):}] [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] and use it to solve the system of equations x-y+z=4, x-2y-2z=9, 2x+y+3z=1

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then find the value of A^(-1) Us...

    Text Solution

    |

  2. Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=...

    Text Solution

    |

  3. If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| th...

    Text Solution

    |

  4. If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

    Text Solution

    |

  5. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  6. If x+y+z=0 , prove that |x a y b z c y c z a x b z b x c y a|=x y z|a ...

    Text Solution

    |

  7. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  8. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  9. If the area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq...

    Text Solution

    |

  10. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  11. The number of distinct real roots of abs((sinx, cosx, cosx),(cos x,sin...

    Text Solution

    |

  12. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  13. Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim(t->0) f(t)...

    Text Solution

    |

  14. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  15. [ 28.If f(x)=|[0,x-a,x-bx+a,0,x-cx+b,x+c,0]| then,[ 1) f(a)=0, 2) f(b)...

    Text Solution

    |

  16. If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which...

    Text Solution

    |

  17. If A and B are invertible matrices then which of the following is not ...

    Text Solution

    |

  18. If x , y , z are different from zero and |1+x1 1 1 1+y1 1 1 1+z|=0 the...

    Text Solution

    |

  19. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  20. If there are two values of a which makes determinant, Delta=|(1,-2,5...

    Text Solution

    |