Home
Class 12
MATHS
The number of distinct real roots of abs...

The number of distinct real roots of `abs((sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x))=0` in the interval `-(pi)/4 le x le (pi)/4` is

A

0

B

2

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of distinct real roots of the determinant \[ D = \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} \] in the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\), we will compute the determinant and set it equal to zero. ### Step 1: Calculate the Determinant Using the formula for the determinant of a 3x3 matrix, we have: \[ D = a(ei-fh) - b(di-fg) + c(dh-eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] For our matrix: - \(a = \sin x\), \(b = \cos x\), \(c = \cos x\) - \(d = \cos x\), \(e = \sin x\), \(f = \cos x\) - \(g = \cos x\), \(h = \cos x\), \(i = \sin x\) Calculating each part, we have: \[ D = \sin x \left( \sin x \cdot \sin x - \cos x \cdot \cos x \right) - \cos x \left( \cos x \cdot \sin x - \cos x \cdot \cos x \right) + \cos x \left( \cos x \cdot \cos x - \sin x \cdot \cos x \right) \] This simplifies to: \[ D = \sin x \left( \sin^2 x - \cos^2 x \right) - \cos x \left( \cos x \sin x - \cos^2 x \right) + \cos x \left( \cos^2 x - \sin x \cos x \right) \] ### Step 2: Simplify the Expression Notice that \(\sin^2 x - \cos^2 x = -\cos(2x)\). The determinant can be rewritten as: \[ D = \sin x (-\cos(2x)) - \cos x (\cos x \sin x - \cos^2 x) + \cos x (\cos^2 x - \sin x \cos x) \] Combining like terms and simplifying yields: \[ D = -\sin x \cos(2x) \] ### Step 3: Set the Determinant Equal to Zero To find the roots, we set the determinant equal to zero: \[ -\sin x \cos(2x) = 0 \] This gives us two cases to consider: 1. \(\sin x = 0\) 2. \(\cos(2x) = 0\) ### Step 4: Solve Each Case **Case 1: \(\sin x = 0\)** In the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\), \(\sin x = 0\) at: \[ x = 0 \] **Case 2: \(\cos(2x) = 0\)** The equation \(\cos(2x) = 0\) gives: \[ 2x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] This simplifies to: \[ x = \frac{\pi}{4} + \frac{n\pi}{2} \] In the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\), the only solution is: \[ x = \frac{\pi}{4} \] ### Step 5: Count the Distinct Real Roots Thus, the distinct real roots in the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\) are: 1. \(x = 0\) 2. \(x = \frac{\pi}{4}\) This gives us a total of **2 distinct real roots**. ### Final Answer The number of distinct real roots of the determinant in the given interval is **2**.

To find the number of distinct real roots of the determinant \[ D = \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (a) 0 (b) 2 (c) 1 (d) 3

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

The number of distinct real roots of the equation |cosx s in x s in x s in x cos x s in x s in x s in x cos x|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1

The number of distinct real roots of the equation sqrt(sin x)-(1)/(sqrt(sin x))=cos x("where" 0le x le 2pi) is

The number of distinct solutions of the equation (5)/(4)cos^(2)2x+cos^(4)x+sin^(4)x+cos^(6)x+sin^(6)x=2 in the interval [0,2 pi] is

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If the area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq...

    Text Solution

    |

  2. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  3. The number of distinct real roots of abs((sinx, cosx, cosx),(cos x,sin...

    Text Solution

    |

  4. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  5. Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim(t->0) f(t)...

    Text Solution

    |

  6. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  7. [ 28.If f(x)=|[0,x-a,x-bx+a,0,x-cx+b,x+c,0]| then,[ 1) f(a)=0, 2) f(b)...

    Text Solution

    |

  8. If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which...

    Text Solution

    |

  9. If A and B are invertible matrices then which of the following is not ...

    Text Solution

    |

  10. If x , y , z are different from zero and |1+x1 1 1 1+y1 1 1 1+z|=0 the...

    Text Solution

    |

  11. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  12. If there are two values of a which makes determinant, Delta=|(1,-2,5...

    Text Solution

    |

  13. If A is a matrix of order 3xx3, then |3A| is equal to………

    Text Solution

    |

  14. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  15. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  16. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  17. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  18. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  19. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  20. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |