Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove the following: `|xx+y x+2y\ x+2y xx+y x+y x+2y x|=9y^2(x+y)`

A

`9x^(2)(x+y)`

B

`9y^(2)(x+y)`

C

`3y^(2)(x+y)`

D

`7x^(2)(x+y)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `|(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)|`
`=|(3(x+y),x+y,y),(3(x+y),x,y),(3(x+y),x+2y,-2y)| [ :' C_(1)toC_(1)+C_(2)+C_(3)` and `C_(3)toC_(3)-C_(2)]`
`=3(x+y)|(1,(x+y),y),(1,x,y),(1,(x+2y),-2y)|` [taking `3(x+y)` common from first column]
`=3(x+y)|(0,y,0),(1,x,y),(1,(x+2y),-2y)| [ :' R_(1)toR_(1)-R_(2)]`
Expanding along `R_(1)`
`=3(xy)[-y(-2y-y)]`
`=3y^(2).3(x+y)=9y^(2)(x+y)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

Using properties of determinants , find the value of k if |{:(x,y,x+y),(y,x+y,x),(x+y,x,y):}|=k(x^(3)+y^(3)) .

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

Using the properties of determinants, show that: abs((x,x^2,yz),(y,y^2,xz),(z,z^2,xy))=(x−y)(y−z)(z−x)(xy+yz+zx)

Prove the following using properties of determinants det[[x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]]=(x-y)(y-z)(z-x)(x+y+z)]|=

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If A and B are invertible matrices then which of the following is not ...

    Text Solution

    |

  2. If x , y , z are different from zero and |1+x1 1 1 1+y1 1 1 1+z|=0 the...

    Text Solution

    |

  3. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  4. If there are two values of a which makes determinant, Delta=|(1,-2,5...

    Text Solution

    |

  5. If A is a matrix of order 3xx3, then |3A| is equal to………

    Text Solution

    |

  6. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  7. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  8. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  9. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  10. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  11. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  12. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  13. |(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

    Text Solution

    |

  14. If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+...

    Text Solution

    |

  15. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A|!=0

    Text Solution

    |

  16. (aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matri...

    Text Solution

    |

  17. |A^(-1)|!=|A+^(-1), where A is a non singular matrix.

    Text Solution

    |

  18. If A and B are matrices of order 3 and |A|=5,|B|=3, the |3AB|

    Text Solution

    |

  19. If the value of a third order determinant is 12, then find the value o...

    Text Solution

    |

  20. If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c...

    Text Solution

    |