Home
Class 12
MATHS
If there are two values of a which makes...

If there are two values of a which makes determinant,
`Delta=|(1,-2,5),(2,a,-1),(0,4,2a)|=86` then the sum of these number is

A

`4`

B

`5`

C

`-4`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant of the given matrix and set it equal to 86. The matrix is: \[ \Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} \] ### Step 1: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where the matrix is represented as: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] In our case: - \( a = 1, b = -2, c = 5 \) - \( d = 2, e = a, f = -1 \) - \( g = 0, h = 4, i = 2a \) Substituting these values into the determinant formula: \[ \Delta = 1(a \cdot 2a - (-1) \cdot 4) - (-2)(2 \cdot 2a - (-1) \cdot 0) + 5(2 \cdot 4 - a \cdot 0) \] ### Step 2: Simplify Each Term Calculating each term step-by-step: 1. **First Term**: \[ 1(a \cdot 2a - (-1) \cdot 4) = 1(2a^2 + 4) = 2a^2 + 4 \] 2. **Second Term**: \[ -(-2)(2 \cdot 2a - 0) = 2(4a) = 8a \] 3. **Third Term**: \[ 5(2 \cdot 4 - 0) = 5 \cdot 8 = 40 \] ### Step 3: Combine All Terms Now, combine all the terms: \[ \Delta = 2a^2 + 4 + 8a + 40 \] \[ \Delta = 2a^2 + 8a + 44 \] ### Step 4: Set the Determinant Equal to 86 Now we set the determinant equal to 86: \[ 2a^2 + 8a + 44 = 86 \] ### Step 5: Rearrange the Equation Rearranging gives: \[ 2a^2 + 8a + 44 - 86 = 0 \] \[ 2a^2 + 8a - 42 = 0 \] ### Step 6: Simplify the Quadratic Equation Dividing the entire equation by 2: \[ a^2 + 4a - 21 = 0 \] ### Step 7: Factor the Quadratic Equation Now we can factor the quadratic: \[ (a + 7)(a - 3) = 0 \] ### Step 8: Solve for \( a \) Setting each factor to zero gives us: 1. \( a + 7 = 0 \) → \( a = -7 \) 2. \( a - 3 = 0 \) → \( a = 3 \) ### Step 9: Find the Sum of the Values of \( a \) Now we find the sum of the two values of \( a \): \[ -7 + 3 = -4 \] ### Final Answer Thus, the sum of the two values of \( a \) is: \[ \boxed{-4} \]

To solve the problem, we need to calculate the determinant of the given matrix and set it equal to 86. The matrix is: \[ \Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

There are two numbers x making the value of the determinant det[[1,-2,52,x,-10,4,2x]] equal to 86

Evaluate the determinant Delta=det[[1,2,4-1,3,04,1,0]]

Find minor or element 5 in the determinant Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|

Find the values of the following determinants |{:(4,0,2),(1,5,-6),(3,-2,8):}|

In the determinant, Delta = |[-2, 5, -1], [4, 7, 0], [5, -3, 1]|, the sum of the minors of elements of third row is

Find the value of determinant [[2,4],[-1,2]]

If ([3,27,5])A([-1,1-2,1])=([2,-10,4]) then sum of the eigen values of A

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If x , y , z are different from zero and |1+x1 1 1 1+y1 1 1 1+z|=0 the...

    Text Solution

    |

  2. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  3. If there are two values of a which makes determinant, Delta=|(1,-2,5...

    Text Solution

    |

  4. If A is a matrix of order 3xx3, then |3A| is equal to………

    Text Solution

    |

  5. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  6. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  7. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  8. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  9. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  10. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  11. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  12. |(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

    Text Solution

    |

  13. If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+...

    Text Solution

    |

  14. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A|!=0

    Text Solution

    |

  15. (aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matri...

    Text Solution

    |

  16. |A^(-1)|!=|A+^(-1), where A is a non singular matrix.

    Text Solution

    |

  17. If A and B are matrices of order 3 and |A|=5,|B|=3, the |3AB|

    Text Solution

    |

  18. If the value of a third order determinant is 12, then find the value o...

    Text Solution

    |

  19. If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c...

    Text Solution

    |

  20. |adjA|=|A|^(2) where A is a square matrix of order two.

    Text Solution

    |