Home
Class 12
MATHS
If x,y,zepsilonR then the value of |((2x...

If `x,y,zepsilonR` then the value of `|((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant, we will follow these steps: Given determinant: \[ D = \begin{vmatrix} (2^x + 2^{-x})^2 & (2^x - 2^{-x})^2 & 1 \\ (3^x + 3^{-x})^2 & (3^x - 3^{-x})^2 & 1 \\ (4^x + 4^{-x})^2 & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 1: Simplify the determinant We will simplify the first two columns of the determinant by subtracting the second column from the first column. \[ D = \begin{vmatrix} (2^x + 2^{-x})^2 - (2^x - 2^{-x})^2 & (2^x - 2^{-x})^2 & 1 \\ (3^x + 3^{-x})^2 - (3^x - 3^{-x})^2 & (3^x - 3^{-x})^2 & 1 \\ (4^x + 4^{-x})^2 - (4^x - 4^{-x})^2 & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 2: Apply the difference of squares Using the identity \(a^2 - b^2 = (a + b)(a - b)\), we can simplify each entry in the first column: \[ D = \begin{vmatrix} 4 \cdot 2^x \cdot 2^{-x} & (2^x - 2^{-x})^2 & 1 \\ 4 \cdot 3^x \cdot 3^{-x} & (3^x - 3^{-x})^2 & 1 \\ 4 \cdot 4^x \cdot 4^{-x} & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 3: Factor out the common term Notice that we can factor out 4 from the first column: \[ D = 4 \begin{vmatrix} 2^x \cdot 2^{-x} & (2^x - 2^{-x})^2 & 1 \\ 3^x \cdot 3^{-x} & (3^x - 3^{-x})^2 & 1 \\ 4^x \cdot 4^{-x} & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 4: Analyze the determinant Now, we can see that the first column is proportional to the second column. Specifically, the first column can be expressed as a multiple of the second column. This means that the columns are linearly dependent. ### Step 5: Conclusion If any two columns (or rows) of a determinant are identical or proportional, the value of the determinant is zero. Thus, we conclude that: \[ D = 0 \] ### Final Answer The value of the determinant is \(0\). ---

To solve the given determinant, we will follow these steps: Given determinant: \[ D = \begin{vmatrix} (2^x + 2^{-x})^2 & (2^x - 2^{-x})^2 & 1 \\ (3^x + 3^{-x})^2 & (3^x - 3^{-x})^2 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

|[2^(x)-2^(-x))^(2),(2^(x)+2^(-x))^(2),1(3^(x)-3^(-x))^(2),(3^(x)+3^(-x))^(2),1(4^(x)-4^(-x))^(2),(4^(x)+4^(-x))^(2),1]

y=(x+1)^(2)(x+2)^(3)(x+3)^(4)

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

2x^2(x^3-x)-3x(x^4+2x)-2(x^2-3x^4)

Simplify: 2x^(2)(x^(3)-x)-3x(x^(4)+2x)-2(x^(4)-3x^(2))

Q find the value of x:- 3/(x-2) - 2/(x-3)=4/(x-3)-3/(x-1)

int(x^(4)-2x^(2)+4x+1)/(x^(3)-x^(2)-x+1)dx

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If A is a matrix of order 3xx3, then |3A| is equal to………

    Text Solution

    |

  2. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  3. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  4. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  5. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  6. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  7. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  8. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  9. |(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

    Text Solution

    |

  10. If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+...

    Text Solution

    |

  11. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A|!=0

    Text Solution

    |

  12. (aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matri...

    Text Solution

    |

  13. |A^(-1)|!=|A+^(-1), where A is a non singular matrix.

    Text Solution

    |

  14. If A and B are matrices of order 3 and |A|=5,|B|=3, the |3AB|

    Text Solution

    |

  15. If the value of a third order determinant is 12, then find the value o...

    Text Solution

    |

  16. If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c...

    Text Solution

    |

  17. |adjA|=|A|^(2) where A is a square matrix of order two.

    Text Solution

    |

  18. Using properties of determinant. Prove that |[sinA,cosA,sinA+cosB],[si...

    Text Solution

    |

  19. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  20. If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta(1)=|(p+x,a+x,a+p),(q+...

    Text Solution

    |