Home
Class 12
MATHS
If x=-9 is a root of |(x,3,7),(2,x,2),(7...

If `x=-9` is a root of `|(x,3,7),(2,x,2),(7,6,x)|=0` then other two roots are…………………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} \] and find the other roots when \( x = -9 \) is one of the roots. ### Step 1: Calculate the Determinant We will calculate the determinant using the first row: \[ D = x \begin{vmatrix} x & 2 \\ 6 & x \end{vmatrix} - 3 \begin{vmatrix} 2 & 2 \\ 7 & x \end{vmatrix} + 7 \begin{vmatrix} 2 & x \\ 7 & 6 \end{vmatrix} \] ### Step 2: Compute the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} x & 2 \\ 6 & x \end{vmatrix} = x^2 - 12 \] 2. For the second determinant: \[ \begin{vmatrix} 2 & 2 \\ 7 & x \end{vmatrix} = 2x - 14 \] 3. For the third determinant: \[ \begin{vmatrix} 2 & x \\ 7 & 6 \end{vmatrix} = 12 - 7x \] ### Step 3: Substitute Back into the Determinant Expression Now substituting these back into the determinant \( D \): \[ D = x(x^2 - 12) - 3(2x - 14) + 7(12 - 7x) \] ### Step 4: Expand and Simplify Expanding this expression: \[ D = x^3 - 12x - 6x + 42 + 84 - 49x \] Combining like terms: \[ D = x^3 - 67x + 126 \] ### Step 5: Set the Determinant Equal to Zero Since we know that \( x = -9 \) is a root, we can substitute \( x = -9 \) into the polynomial: \[ (-9)^3 - 67(-9) + 126 = 0 \] ### Step 6: Factor the Polynomial We can factor the polynomial \( x^3 - 67x + 126 \) knowing one root is \( x = -9 \). We can perform synthetic division or polynomial long division to find the other factors. ### Step 7: Find the Other Roots Using synthetic division with \( x + 9 \): 1. Divide \( x^3 - 67x + 126 \) by \( x + 9 \). 2. This will yield a quadratic polynomial. After performing the division, we find: \[ x^3 - 67x + 126 = (x + 9)(x^2 - 9x + 14) \] ### Step 8: Solve the Quadratic Equation Now we solve the quadratic equation \( x^2 - 9x + 14 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 1 \cdot 14}}{2 \cdot 1} \] Calculating the discriminant: \[ b^2 - 4ac = 81 - 56 = 25 \] Thus, \[ x = \frac{9 \pm 5}{2} \] This gives us the roots: \[ x = \frac{14}{2} = 7 \quad \text{and} \quad x = \frac{4}{2} = 2 \] ### Final Answer The other two roots are \( x = 2 \) and \( x = 7 \). ---

To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0 , then find the other two roots.

If one of the roots of |(3,5,x),(7,x,7),(x,5,3)|=0 is -10, then other roots are

If one root of |(7,6,x),(2,x,2),(x,3,7)|=0 is x=-9, find the other roots

If x=-4 is a root of Delta=|{:(x,2,3),(1,x,1),(3,2,x):}|=0 , then find the other two roots.

If two roots of 4x^(3)-12x^(2)+9x-2=0 are equal then the roots are

if the roots of 2x^(3)3x^(2)11x+6=0 are in A.P,then the roots are

If one root of x^(3)+2x^(2)+3x+k=0 is the sum of the other two roots then k=

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  2. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  3. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  4. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  5. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  6. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  7. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  8. |(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

    Text Solution

    |

  9. If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+...

    Text Solution

    |

  10. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A|!=0

    Text Solution

    |

  11. (aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matri...

    Text Solution

    |

  12. |A^(-1)|!=|A+^(-1), where A is a non singular matrix.

    Text Solution

    |

  13. If A and B are matrices of order 3 and |A|=5,|B|=3, the |3AB|

    Text Solution

    |

  14. If the value of a third order determinant is 12, then find the value o...

    Text Solution

    |

  15. If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c...

    Text Solution

    |

  16. |adjA|=|A|^(2) where A is a square matrix of order two.

    Text Solution

    |

  17. Using properties of determinant. Prove that |[sinA,cosA,sinA+cosB],[si...

    Text Solution

    |

  18. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  19. If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta(1)=|(p+x,a+x,a+p),(q+...

    Text Solution

    |

  20. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |