Home
Class 12
MATHS
(A^(3))^(-1)=(A^(-1))^(3), where A is a ...

`(A^(3))^(-1)=(A^(-1))^(3)`, where A is a square matrix and `|A|!=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

True
Since `(A^(n))^(-1)=(A^(-1))^(n)` where `n epsilonN`.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)] . If Z=PQ^(-1) , where Q is a square matrix of order 3, then the value of Tr((adjQ)P) is equal to (where Tr(A) represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

Let B=A^(3)-2A^(2)+3A-I where l is an identity matrix and A=[(1,3,2),(2,0,3),(1,-1,1)] then the transpose of matrix B is equal to

(aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matrix.

If |A|=3 ,where A is square matrix of order 3 ,then find A*adj(A)

If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C , where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If |A| = 8, where A is square matrix of order 3, then what is |adj A| equal to ?

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.

A is square matrix of order 2 such that A A^(T)= I and B is non-singular square matrix of order 2 and period 3 . If det (A)!=det(B), then value of sum_(r=0)^(20)det(adj(A^(r)B^(2r+1))) is (where A^(T) denotes the transpose of matrix A )

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  2. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  3. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  4. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  5. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  6. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  7. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  8. |(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

    Text Solution

    |

  9. If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+...

    Text Solution

    |

  10. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A|!=0

    Text Solution

    |

  11. (aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matri...

    Text Solution

    |

  12. |A^(-1)|!=|A+^(-1), where A is a non singular matrix.

    Text Solution

    |

  13. If A and B are matrices of order 3 and |A|=5,|B|=3, the |3AB|

    Text Solution

    |

  14. If the value of a third order determinant is 12, then find the value o...

    Text Solution

    |

  15. If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c...

    Text Solution

    |

  16. |adjA|=|A|^(2) where A is a square matrix of order two.

    Text Solution

    |

  17. Using properties of determinant. Prove that |[sinA,cosA,sinA+cosB],[si...

    Text Solution

    |

  18. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  19. If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta(1)=|(p+x,a+x,a+p),(q+...

    Text Solution

    |

  20. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |