Home
Class 12
MATHS
If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 th...

If `Delta=|(a,p,x),(b,q,y),(c,r,z)|=16` then `Delta_(1)=|(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)|=32`

Text Solution

Verified by Experts

The correct Answer is:
N/a

True
We have `Delta=|(a,p,x),(b,q,y),(c,r,z)|=16`
and we have to prove `Delta_(1)=|(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)|=32`
`Delata_(1)=|(2p+2x+2a,a+x,a+p),(2q+2y+2b,b+y,b+q),(2r+2z+2c,c+z,c+r)| [ :' C_(1)toC_(1)+C_(2)+C_(3)]`
`=2|(p,x-p,a+p),(q,y-q,b+q),(r,z-r,c+r)|`
[taking 2 common from `C_(1)` and then `C_(1)toC_(1)-C_(2),C_(2)toC_(2)-C_(3)`]
`=2[(p,x,a+p),(q,y,b+q),(r,z,c+r)]-[(p,p,a+p),(q,q,b+q),(r,r,c+r)]`
`=2|(p,x,a+p),(q,y,b+q),(r,z,c+r)|-0`
[since two column `C_(1)` and `C_(2)` are identicals]
`=2|(p,x,a),(q,y,b),(r,z,c)|+|(p,x,p),(q,y,q),(r,z,r)|`
`=2|(a,p,x),(b,q,y),(c,r,z)|+0`
[since `C_(1)` and `C_(3)` are identical in second determinant and in first determinant `C_(1)hArrC_(2) and then C_(1)hArrC_(3)`]
`=2xx16 [ :' Delta=16]`
`=32` Hence proved.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

If |[a, p, x],[ b, q, y], [c, r, z]|=16 , then the value of |[p+x, a+x, a+p], [q+y ,b+y, b+q],[ x+z, c+z, c+r]| is 4 (b) 8 (c) 16 (d) 32

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

If Delta_1=|[a, b, c],[ x, y, z],[ p, q, r]| and Delta_2=|[q,-b, y],[-p, a,-x],[ r,-c, z]|, without expending or evaluating Delta_1 and Delta_2 , show that Delta_1+Delta_2=0

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

If Delta_(1)=|[a,b, c],[x, y, z],[p,q ,r]|"and "Delta_(2) |[q,-b, y],[-p, a, -x],[r,-c ,z]| then without expanding Delta_(1) " and "Delta_(2), "prove that "Delta_(1) + Delta_(2) =0

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. If A is invertible matrix of order 3xx3, then |A^(-1)| is equal to…………

    Text Solution

    |

  2. If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x)...

    Text Solution

    |

  3. If cos2theta=0, then |(0,costheta,sin theta),(cos theta, sin theta, 0)...

    Text Solution

    |

  4. If is A is a matrix of order 3xx3, then (A^(2))^(-1) is equal to…………….

    Text Solution

    |

  5. If A is a matrix of order 3xx3 then the number of minors in determinan...

    Text Solution

    |

  6. The sum of products of elements of any row with the cofactors of corre...

    Text Solution

    |

  7. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  8. |(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

    Text Solution

    |

  9. If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+...

    Text Solution

    |

  10. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A|!=0

    Text Solution

    |

  11. (aA)^(-1)=1/aA^(-1) where a is any real number and A is a square matri...

    Text Solution

    |

  12. |A^(-1)|!=|A+^(-1), where A is a non singular matrix.

    Text Solution

    |

  13. If A and B are matrices of order 3 and |A|=5,|B|=3, the |3AB|

    Text Solution

    |

  14. If the value of a third order determinant is 12, then find the value o...

    Text Solution

    |

  15. If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c...

    Text Solution

    |

  16. |adjA|=|A|^(2) where A is a square matrix of order two.

    Text Solution

    |

  17. Using properties of determinant. Prove that |[sinA,cosA,sinA+cosB],[si...

    Text Solution

    |

  18. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  19. If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 then Delta(1)=|(p+x,a+x,a+p),(q+...

    Text Solution

    |

  20. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |