Home
Class 11
MATHS
Prove that (b+c)cosA+(c+a)cosB+(a+b)cosC...

Prove that `(b+c)cosA+(c+a)cosB+(a+b)cosC=2sdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sum(b+c)cosA=2s Prove that (b+c)cosA+(c+a)cosB+(a+b)cosC=a+b+c

In Delta ABC prove that (b+c)cosA + (c+a)cosB + (a+b)cosC = a+b+c

Show that (b+c)cosA +(c+a)cosB +(a+b)cosC =a+b+c

In Delta ABC prove that 2(bc cosA + ca cosB + ab cosC) = a^2 + b^2 + c^2

In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

For DeltaABC , prove that, (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc) .

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

In Delta ABC prove that a(b^2 + c^2) cosA + b(c^2 +a^2)cosB + c(a^2 + b^2) cosC = 3abc