Home
Class 11
MATHS
int tan(sin^(-1)x)dx is equal to...

`int tan(sin^(-1)x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)tan(sin^(-1)x)dx is equals

int_(0)^(1)tan(sin^(-1)x)dx equals

int_(0)^(1)tan(sin^(-1)x)dx equals

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

int(1)/(1+3 sin ^(2)x)dx is equal to