Home
Class 12
MATHS
If the chord of contact of the tangents ...

If the chord of contact of the tangents from a point on the circle `x^2 + y^2 = a^2` to the circle `x^2 + y^2 = b^2` touch the circle `x^2 +y^2 = c^2`, then the roots of the equation `ax^2 + 2bx + c = 0` are necessarily. (A) imaginary (B) real and equal (C) real and unequal (D) rational

Promotional Banner

Similar Questions

Explore conceptually related problems

chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)=81 to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=16 , then the value of b is

If the chord of contact of the tangents drawn from a point on the circle x^(2)+y^(2)+y^(2)=a^(2) to the circle x^(2)+y^(2)=b^(2) touches the circle x^(2)+y^(2)=c^(2), then prove that a,b and c are in GP.

If two distinct chords drawn from the point (a, b) on the circle x^2+y^2-ax-by=0 (where ab!=0) are bisected by the x-axis, then the roots of the quadratic equation bx^2 - ax + 2b = 0 are necessarily. (A) imaginary (B) real and equal (C) real and unequal (D) rational

If the chord of contact of tangents from a point P(h, k) to the circle x^(2)+y^(2)=a^(2) touches the circle x^(2)+(y-a)^(2)=a^(2) , then locus of P is

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

If a+b+c=0, then the equation 3ax^(2)+2bx+c=0 has (i) imaginary roots (ii) real and equal roots (ii) real and unequal roots (iv) rational roots

If ax^3+bx^2+cx+d has local extremum at two points of opposite signs then roots of equation ax^2+bx+c=0 are necessarily (A) rational (B) real and unequal (C) real and equal (D) imaginary

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then