Home
Class 12
MATHS
sin[cos^(-1)x]=cos[sin^(-1)x]...

`sin[cos^(-1)x]=cos[sin^(-1)x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

u=sin(m cos^(-1)x),v=cos(m sin^(-1)x), provethat (du)/(dv)=sqrt((1-u^(2))/(1-v^(2)))

The equation cos x+cos^(-1)x=sin x+sin^(-1)x is

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

then value of the expression sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x)))

Evaluate int_(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x)/(sin(sin^(-1)x)))|dx

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

If alpha="sin"^(-1)("cos"("sin"^(-1)x)) and beta="cos"^(-1)("sin"("cos"^(-1)x)) , then