Home
Class 12
MATHS
Let int \ (secxdx)/sqrt(sin(2x+theta)+si...

Let `int \ (secxdx)/sqrt(sin(2x+theta)+sintheta)=f(x)+C`, where C is an arbitrary constant such that `f(0)=2/sqrt3` at `theta=pi/6,` then the value of `f(pi/4)` when `theta=pi/4,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(secxdx)/(sqrt(sin(2x+theta)+sintheta)) is

If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+C (where , C is the constant of integration) and f(0) = 0 , then the value of f(pi/4) is

If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+C (where , C is the constant of integration) and f(0) = 0 , then the value of f(pi/4) is

Let f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

If f(theta) = sin(tan^(-1)(("sin theta)/(sqrt(cos 2 theta)))) , where -pi/4 lt theta lt pi/4 , then the value of d/(d(tan theta)) f(theta) is

Let f:(-1,1) rarrR be such that f(cos4theta)=2/(2-sec^2theta) for thetain(0,pi/4)cup(pi/4,pi/2) . The the values of f(1/3) are

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is