Home
Class 12
MATHS
The value of lim(n->oo)(sqrt(1)+sqrt(2)+...

The value of `lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+2sqrt(n))/(nsqrt(n))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(n to oo) (sqrt(1) + 2sqrt(2) + 3sqrt(3) + …… + nsqrt(n))/(n^(5//2)) is :

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr oo)[(sqrt(1)+2sqrt(2)+3sqrt(3)+ .......... +nsqrt(n))/(n^(5/2))]

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

lim_(n to infty) (sqrt(1)+sqrt(2)+ . . . +sqrt(n))/(n^(3//2))=

lim_(n to oo) (sqrt(1) + sqrt(2) + …… + sqrt(n))/(n^(3//2)) equals :

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0