Home
Class 12
MATHS
Let I=int0^(pi/2)(sinx/x)dx, then...

Let `I=int_0^(pi/2)(sinx/x)dx`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

If int_(0)^(pi)xf(sinx)dx=A int_(0)^(pi//2) f(sinx)dx , then A is

I_10=int_0^(pi/2)x^(10)sinx dx then I_10+90I_8 is

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_0^(pi/2) (Cosx - Sinx)dx