Home
Class 12
MATHS
If int \ sin^(-1/11)(x)*cos^(-21/11)(x) ...

If `int \ sin^(-1/11)(x)*cos^(-21/11)(x) \ dx=p/20 tan^(q/r)x + c,`where `p, q,r and c` are constants, then `p + q - r` equals (where `q and r` are co-prime natural numbers)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let int dx/(x^(2008)+x) = 1/p In((x^(q))/(1+x^(r)))+C where p,q,r in N and need not be distinct, then the value of ((p+q)/r) equals

int (dx)/(x ^(2014)+x)=1/p ln ((x ^(q))/(1+ x ^(r)))+C where p,q r in N then the value of (p+q+r) equals (Where C is constant of integration)

int (dx)/(x ^(2014)+x)=1/p ln ((x ^(q))/(1+ x ^(r)))+C where p,q r in N then the value of (p+q+r) equals (Where C is constant of integration)

If solution of cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(xsqrt(6))),x!=0 is 1/psqrt(q/r) where p,q,r are prime then value of (p+q-r)/p is

If solution of cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(xsqrt(6))),x!=0 is 1/psqrt(q/r) where p,q,r are prime then value of (p+q-r)/p is

The roots of the equation (x-p) (x-q)=r^(2) where p,q , r are real , are

Let I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx , where p, q, r are arbitrary constants. The numerical value of I depends on:

Let I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx , where p, q, r are arbitrary constants. The numerical value of I depends on: