Home
Class 12
MATHS
int \ (5x^6-1)/(x^6+x+1)^2 \ dx is equal...

`int \ (5x^6-1)/(x^6+x+1)^2 \ dx` is equal to (i)`(-x)/(x^6+x+1)+C` (ii)`(x)/(x^6+x+1)+C` (iii)`(x+1)/(x^6+x+1)+C` (iv)`(-x-1)/(x^6+x+1)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1-x^6)/(1-x)dx

int ((x-1)dx)/(6x^(2) + x - 1)

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

int(x+1)/(x^2+5x+6)dx=

int(x^(5))/(x^(6)+1)dx

int(x^(6)-1)/(x^(2)+1)dx=....+c

int(x^(4)+1-x^(2))/(x^(6)+1)dx=

(-2)x\ (-3)x\ 6\ x\ (-1) is equal to (a)36 (b) -36 (c) 6 (d) -6

I = int (x + x^(2/3) + x^(1/6))/(x (1+x^(1/3))) dx is equal