Home
Class 12
MATHS
Consider, f(x)=sin^(- 1)sqrt(1-sqrt(x)) ...

Consider, `f(x)=sin^(- 1)sqrt(1-sqrt(x)) + tan^(- 1)(sqrt(1/(sqrt(x))-1))` If S is the set of integers in the range of f(x) and `A = [a_(ij)]_(2xx2)` is a matrix where `a_(ij) sub S` and all `a_(ij)` are distinct then find the no of different values of det(A).

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a 2xx2 matrix A where a_(ij)=i+j

If a_(ij)=(1)/(2) (3i-2j) and A = [a_(ij)]_(2xx2) is

Construct a 2 x 3 matrix A = [a_(ij)]_(2 xx 3) for which a_(ij) = 2 i + j

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))

If matrix A = [a_(ij)] _(2xx2) where a_(ij) {:(-1," if " i !=j ),(=0 , " if " i = j):} then A^(2) is equal to :

Let M = [a_(ij)]_(3xx3) where a_(ij) in {-1,1} . Find the maximum possible value of det(M).