Home
Class 12
MATHS
prove that 2tan^-1(sqrt((a-b)/(a+b))tan(...

prove that `2tan^-1(sqrt((a-b)/(a+b))tan(theta/2))`=`cos^-1((acostheta+b)/(a+bcostheta))`

Promotional Banner

Similar Questions

Explore conceptually related problems

2tan^(-1)(sqrt((a-b)/(a+b))tan((theta)/(2)))=cos^(-1)((a cos theta+b)/(a+b cos theta))

Prove that 2 tan^(-1) (sqrt((a-b)/(a+b)) "tan"(theta)/(2))=cos^(-1) ((a cos theta +b)/(a +b cos theta))

Prove that 2"tan"^(-1)(sqrt((a-b)/(a+b))"tan"theta/(2))="cos"^(-1)((a"cos"theta+b)/(a+b"cos"theta)) .

Prove that 2 tan ^(-1)[(sqrt((a-b)/(a+b))) tan ((theta)/2)]=cos ^(-1)((b+a cos theta)/(a+b cos theta))

Prove that : 2tan^(-1)(sqrt((a-b)/(a+b))tan""x/2)=cos^(-1)((acosx+b)/(a+bcosx)) .

The value 2tan^(-1)[sqrt((a-b)/(a+b))tan(theta/2)] is equal to cos^(-1)((acostheta+b)/(a+bcostheta)) (b) cos^(-1)((a+bcostheta)/(acostheta+b)) cos^(-1)((acostheta)/(a+bcostheta)) (d) cos^(-1)((bcostheta)/(acostheta+b))

The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)((acostheta+b)/(a+bcostheta)) (b) cos^(-1)((a+bcostheta)/(acostheta+b)) cos^(-1)((acostheta)/(a+bcostheta)) (d) cos^(-1)((bcostheta)/(acostheta+b))

The value 2tan^(-1)[sqrt((a-b)/(a+b))tantheta/2] is equal to cos^(-1)((acostheta+b)/(a+bcostheta)) (b) cos^(-1)((a+bcostheta)/(acostheta+b)) cos^(-1)((acostheta)/(a+bcostheta)) (d) cos^(-1)((bcostheta)/(acostheta+b))

2tan^(-1)[sqrt((a-b)/(a+b))tan ""theta/2]= a) cos^(-1)((a cos theta + b)/(a+bcos theta)) b) cos^(-1)((a+b cos theta)/(acos theta+b)) c) cos^(-1)((acos theta)/(a+bcos theta)) d) cos^(-1)((bcos theta)/(acos theta+b))