Home
Class 12
MATHS
if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2...

if `x^2+y^2 = t - 1/t` and` x^4 + y^4 = t^2 + 1/t^2 `then prove that `dy/dx = 1/(x^3y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2 + 1/t^2 then prove that dy/dx = x^3y

If x^2 + y^2 = t + 1/t and x^4 + y^4 = t^2 + 1/t^2 , then show that dy/dx = -1/(x^3y)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2 then prove that x^3ydy/dx=1 .

If x^2 + y^2 = t -(1/t) and x^4 + y^4 = t^2 + (1/ t^2) , then show that x^3 y (dy/dx) = 1

If x^2+y^2= t-1/t and x^4+y^4 = t^2+1/t^2 ,show that , x^3y (dy)/(dx) = 1 .

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^2+y^2=t+1/t and x^4+y^4=t^2+1/t^2 then (dy)/(dx)=