Home
Class 12
MATHS
if a^x = b^y = c^z and b^2 = ac prove th...

if `a^x = b^y = c^z` and `b^2 = ac `prove that ` y = (2xz)/(x+z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

If x^(a) = y^(b) = z^ (c ) and y^(2) = xz, prove that b= ( 2ac)/( a+c)

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

IF a^x=b^y=c^z,b^2=ac then 1/x+1/z =