Home
Class 12
MATHS
Prove that logx=log[1-{1-(1-x^2)^(- 1)}...

Prove that `logx=log[1-{1-(1-x^2)^(- 1)}^(-1)]^(-1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 log x-log (x +1)-log (x -1)= 1/x^2+1/(2x^4)+1/(3x^6) +......, where |x|<1.

Solve log(x+1)=2logx

Prove that (log_ab x)/(log_a x)=1+log_x b

If 0

If 0ltxlt1 , prove that: log(1+x)+log(1+x^2)+log(1+x^4)+… oo=-log(1-x)

Prove that d/(dx)[2xtan^-1x-log(1+x^2)]=2tan^-1x

Prove that: lim_(x to 0)(sqrt(1+x)-1)/(log(1+x))=(1)/(2)

If y=(logx)^((logx)^((logx)^(....oo))) prove that, xlogx(dy)/(dx)=(y^(2))/(1-y log(logx))

Prove that intxlog(1+1/x)dx =x^2/2log((x+1)/x)-x^2/2 logx-1/2log(x+1)+1/2x+c

int (log x)/(1+logx)^2 dx