Home
Class 12
MATHS
If [(lambda^(2)-2lambda+1,lambda-2),(1-l...

If `[(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C`, where A, B and C are matrices then find matrices B and C.

Promotional Banner

Similar Questions

Explore conceptually related problems

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C where A,B,C are matrices then B + C = a) [(-1,-1),(4,1)] b) [(1,-1),(4,1)] c) [(1,1),(-4,1)] d) [(-1,-1),(-4,1)]

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.

Let plambda^(4)+qlambda^(3)+rlambda^(2) + slambda+t= |{:(lambda^(2)+3lambda,,lambda-1,,lambda+3),(lambda+1 ,,-2lambda,,lambda-4),(lambda-3,,lambda+4,,3lambda):}| be an indentity in lambda p,q, r s and r are constants. Then find the value of t.

If plambda ^(4)+qlambda^(3)+rlambda ^(2)+ s lambda +t= |{:(lambda^(2)+3,lambda -1, lambda +3),(lambda^(2)+1,2-lambda ,lambda-3),(lambda^(2)-3,lambda+4,3lambda):}| then t is equal to : a)33 b)22 c)21 d)57

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

det [[lambda ^ (4) +2 lambda ^, 2 lambda ^ (3) -3,3 lambda ^ (2) + lambda2,3,15,0,2]] = a lambda ^ (4) + b lambda ^ (3) + c lambda ^ (2) + d lambda + e

If |(a^(2), b^(2), c^(2)),((a+lambda)^(2), (b+lambda)^(2), (c+lambda)^(2)),((a-lambda)^(2), (b-lambda)^(2), (c-lambda)^(2))|=klambda|(a^(2), b^(2),c^(2)),(a,b,c),(1,1,1)|,lambda ne 0 then k is equal to