Home
Class 12
MATHS
4-points whose position Vectors veca,ve...

4-points whose position Vectors `veca,vecb,vecc and vecd` are coplanar and `(sin alpha)veca+(2sin2beta)vecb+(3sin gamma)vecc-vecd=vec0.` then the least value of `sin^2 alpha+sin^2 2beta+sin^2 3gamma` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2sin 2beta) vecb + (3sin 3gamma) vecc - vecd= vec0 . Then the least value of sin^(2) alpha + sin^(2) 2beta + sin^(2) 3gamma is

Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2sin 2beta) vecb + (3sin 3gamma) vecc - vecd= vec0 . Then the least value of sin^(2) alpha + sin^(2) 2beta + sin^(2) 3gamma is

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is

If alpha+beta-gamma=pi , then sin^2alpha+sin^2beta-sin^2gamma=

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Show that the four points A,B,C,D with position vectors veca*vecb*vecc*vecd respectively, are coplanar if and only if 3veca-2vecb+vecc-2vecd=vec0 .

Show that the four points A, B, C and D with position vectors veca, vecb, vecc and vecd respectively are coplanar if 3 veca-2 vecb+vecc-2 vecd=0

Given alpha+beta+gamma=pi then sin^2alpha+sin^2beta-sin^2gamma is equal to……