Home
Class 12
MATHS
If alpha and beta satisfying the equatio...

If `alpha` and `beta` satisfying the equation `sinalpha+sinbeta=sqrt(3)(cosalpha-cosbeta)` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (sinalpha+sinbeta)/(cosalpha+cosbeta) is equal to

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Let alphaandbeta be such that piltalpha-betalt3pi . If sinalpha+sinbeta=-(21)/(65)and cosalpha+cosbeta=-(27)/(65) , then the value of "cos"((alpha-beta))/(2) is

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

For 0ltalphaltbetalt(pi)/(2),if(sinalpha)/(sinbeta)=(sqrt3)/(2)and (cosalpha)/(cosbeta)=(sqrt5)/(2),then

Let alpha, beta be such that pi lt=alpha lt=beta lt=3pi if sinalpha + sinbeta = -21/65 and cosalpha + cosbeta = -27/65 , then the value of cos""(alpha - beta)/65 is :

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

If alpha+beta=(pi)/(2) , then prove that cosalpha=sqrt((sinalpha)/(cosbeta)-sinalphacosbeta)