Home
Class 12
MATHS
lim(x->o+) (logx^n - [x])/[[x]] ,n being...

`lim_(x->o+) (logx^n - [x])/[[x]]` ,n being a natural number and `[x]` denotes greatest integer function .

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

lim_(x->0) (lnx^n-[x])/[x], n in N where [x] denotes the greatest integer is

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is