Home
Class 12
MATHS
f(x)=1/[x]+log(1-{x}) (x^2-3x-10)+1 /sqr...

`f(x)=1/[x]+log_(1-{x}) (x^2-3x-10)+1 /sqrt(2-|x|) + 1/(sec(sinx))` find the domain of the function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x in (0,pi/2)dot Then find the domain of the function f(x)=1/sqrt((-(log)_(sinx)tanx))

Let x in (0,pi/2)dot Then find the domain of the function f(x)=1/sqrt((-(log)_(sinx)tanx))

Let x in (0,pi/2)dot Then find the domain of the function f(x)=1/sqrt((-(log)_(sinx)tanx))

Find the domain of the function f(x) = sin^(-1)(log_(2)x)

Find the domain of the function : f(x)=sin^(-1)(log_(2)x)

The domain of the function f(x)=log_(2x-1)(x-1) is

f(x)=log_(5)(cos^(-1)sqrt(x^(2)+5x+6)+sec^(-1)[{x}+1]([.] denotes greatest integer function and {.} denotes fractional part function. Find the domain of f(x) :

f(x)=log_(5)(cos^(-1)sqrt(x^(2)+5x+6)+sec^(-1)[{x}+1]([.] denotes greatest integer function and {.} denotes fractional part function. Find the domain of f(x) :

the domain of the function f(x)=log_(3+x)(x^(2)-1) is